
Trading Space for Time:
Constant-Speed Algorithms for Managing Future Events

in Scientific Simulations

Clarence Lehman1, Adrienne Keen2, and Richard Barnes1

1University of Minnesota, 123 Snyder Hall, Saint Paul, MN 55108, USA
2London School of Hygiene and Tropical Medicine, Keppel St., London WC1E 7HT, UK

“It is a mistake to try to look too far ahead. The chain of destiny can only be grasped one link at a time.”
—Winston Churchill

Abstract— Given vast increases in computing capacity, ap-
plications in science and engineering that were formerly
interpreted with ordinary or partial differential equations, or
by integro-partial differential equations, can now be under-
stood through microscale modeling. Interactions among in-
dividual particles—be they molecules, viruses, or individual
humans—are modeled directly, rather than first abstracting
the interactions into mathematical equations and then simu-
lating the equations. One approach to microscale modeling
involves scheduling all events into the future, wherever that
is possible. With sufficient space-for-time tradeoffs, this con-
siderably improves the speed of the simulation, but requires
scheduling algorithms of high efficiency. In this paper we
describe our variation on calendar queues and their usage,
presenting detailed algorithms, intuitive explanations of the
methods, and notes from our experiences applying them in
large-scale simulations. Results can be useful to scientists
in ecology, epidemiology, economics, and other disciplines
that employ microscale modeling.

Keywords: microscale modeling, discrete event simulation, cal-
endar queues, pending events set, space-time tradeoff

1. Introduction
The obvious approach to model a large number of discrete
interacting entities, hereinafter called “individuals,” is to
emulate what is done to model continuous systems with
differential equations. That is, select a small time step ∆t,
compute how the system will change during the interval ∆t,
update the system with those changes, then advance to the
next time step. In ordinary differential equations, as the time
step shrinks, the dynamics of the simulated system converge
to the correct behavior. This is “macroscale modeling,”
following Euler’s method or its many variations [1]. With a
model of 100 compartments, representing, for example, 100
age classes in a human population, relatively few dynamical
variables must be examined and updated in each time step.

The same approach works with microscale modeling,
though with difficulties. At each time step, each individual
is examined to determine what interactions will occur during

that time step. The difficulty with this approach is twofold.
First, each individual acts as a dynamical variable, so there
can be many millions or hundreds of millions of variables
to be examined and updated in each time step. Moreover,
as the time step shrinks to assure convergence, it becomes
exceedingly unlikely that anything will happen to a given
individual during the time step. Therefore, in contrast with
its macroscale counterpart, that approach to microscale mod-
eling spends most of its time checking and finding nothing
to do.

Inspiration for a faster approach comes from an alternative
method of solving differential equations. Instead of deter-
mining what will happen during the present small time step,
an algorithm can determine at what time in the future the
next event will occur. This can be determined reliably for
the very next event, and the precise process for doing so is
called Gillespie’s method [2]. It is the complement of the
standard method.1

Despite certain epistemological difficulties about project-
ing the future that are beyond the scope of the present paper,
hinted at in Churchill’s statement above, Gillespie’s method
can be extended to determine possible times for all future
events in many dynamical systems of scientific interest—or
at least all events that control the fate of the system. But the
number of future events can be large, with many events per
individual, and the number of individuals in the simulation
may be tens or hundreds of millions or more.

Fortunately, algorithms are known that are extremely
efficient at handling schedules of future events. Discovered
by Randy Brown in 1988 [3], these are called “calendar
queues” or “pending event sets,” and have been undergoing
successive refinements ever since (e.g. [4] [5] [6] [7]). They
have the desirable—and remarkable—property that their
speed is independent of the number of events scheduled.

1In simulating f(x) = dx/dt ≈ ∆x/∆t, a small time step ∆t can be
established, such as 0.01 seconds, and the change in population (or other
simulated quantity) can be estimated as ∆x ≈ f(x)∆t. That is Euler’s
method. Alternatively, a change in quantity ∆x can be specified (such as
a population growth of one individual) and the time for that to occur can
be estimated as ∆t ≈ ∆x/f(x). That is Gillespie’s method. Thus the
mathematics for the two are complementary.

Int'l Conf. Scientific Computing | CSC'12 | 305

Adding an event, canceling one, or finding the next event
about to occur is the same whether the schedule contains 100
events or 100 million. That is, they are “Order 1” algorithms.

In this paper we present our adaptation of calendar queues
to large-scale individual-based modeling in epidemiology.
Lessons should be applicable to areas including ecology,
economics, and other physical and natural sciences. We
attempt to make our presentation intuitive for access by
scientists and other readers outside computer science. The
goals of this paper are to (1) review the idea of space-
for-time trade-offs that have become widely useable and
applicable to other algorithms (e.g. [8]), (2) explain our
variation on calendar queues and their incorporation in
microscale simulations, and (3) present our algorithms in
full detail for use and adaptation by others.

2. Space for time
The persistent increase in random access computer memories
has carried algorithms through a “phase change,” wherein
a slow continuous advance in memory sizes has resulted
in a rapid, almost abrupt, change in some of the rules for
constructing algorithms for scientific programs. If it will
speed processing, computer algorithms can now afford to
allocate hundreds of millions of bytes of empty space—
even if that space will never be used. This is a “space-
for-time tradeoff.” With large memories now available, such
allocation is no longer wasting memory. On the contrary,
leaving memory unused, or leaving it applied to insignificant
purposes, is wasting it.

A basic space–time tradeoff arises with numerical keys.
Suppose we have 10,000 items, each identified by a distinct
six-digit “key,” and with keys randomly distributed among
values from ‘000000’ to ‘999999’. Suppose each of the
10,000 items occupies 100 memory cells (e.g. 100 bytes).
Stored contiguously, this will require 104 × 102 = 106

memory cells. In such a compact arrangement, searching can
be relatively fast if the entries are kept in numeric order2.
However, in this case adding and deleting will be slow,
averaging N or more accesses to keep the list contiguous and
in order. On the other hand, if the entries are left in random
order, adding and deleting will be fast, 1 to 3 accesses only,3

but searching will be slow, sequentially checking each entry
until the right one is encountered. The point is, this minimal-
space approach inevitably results in algorithms that are slow
in one respect or another.

An alternative is to “waste” memory by allocating one slot
in memory for each of the million entries possible. Now to
search for a specific six-digit key, say key ‘314159’, the
algorithm merely goes directly to the 314,159th entry of the
table. Only one access to the memory array is thus needed

2For instance, by using a binary search algorithm, which is of Order log2 N
accesses, where N is the number of items in the list

3New entries can be added at the end in 1 access; deleted entries can be
swapped with the entry at the end in 3 accesses.

to retrieve, and the same is needed to add or delete. With
10,000 active entries, this space–time tradeoff speeds the
algorithm 5,000 fold. However, it comes at the expense of
100-million memory cells, about one-tenth of a gigabyte.
Such cavalier abandon in the use of memory would have
been unthinkable until recently, but if speed is the utmost
criterion, then allocating an extra 1/10 GB to accomplish a
multi-thousand-fold increase in speed is the clear and proper
choice.

This approach extends to larger keys through the method
of “hash coding,” which is directly related to calendar
queues. Hash coding is an Order-1 algorithm known at
least since Arnold Dumey in 1956 [9]. The key may be
an individual’s first, last, and middle name, for which the
space required for direct access would be astronomical,
beyond the power of any computer presently foreseeable.
Even if the key was only a nine-digit social security number,
such as 123-45-6789, providing one direct-access entry for
all possible social security numbers would be prohibitively
large.

The simplest solution merely extracts the rightmost six
digits of the social security number and indexes an array of
a million entries with those six digits. Of course, as many
as 1,000 individuals may share the same last six digits of
their social security numbers, so “collisions” can occur. But
with only 10,000 entries of a million active, and assuming
all possible social security numbers are equally likely, each
entry in the array has only a 0.01 chance of being occupied,
so the chance that two or more individuals will occupy
the same cell is very small. Nonetheless, the possibility of
collisions must be provided for, and a variety of practical
methods have been devised [10]. Once that is done, locating
an individual by social security number, or indeed by first,
last, and middle name, can be accomplished in one access,
or arbitrarily close to one access, with a sufficiently large
space-for-time tradeoff.

Dumey’s scheme [9] was to use a modulus operation by
considering the key to be a large number, dividing it by the
size of the memory array (number of entries in the array),
then discarding the quotient and using the remainder to index
the array—as in the social security example. In that case, the
rightmost six digits were equivalent to the remainder after
division by one million. Essentially the same underlying
scheme is applied in calendar queues, dividing the scheduled
time by the size of the memory array (one year’s worth of
minutes in the intuitive example to follow), and using the
remainder to index the array. Therefore, the same space-
for-time tradeoffs that make hash-coded accesses maximally
fast also can make calendar queues, properly programmed,
maximally fast for managing large numbers of future events.

3. Future events
Having emphasized the value of spending memory to buy
time, we must also say that it is pointless to spend memory

306 Int'l Conf. Scientific Computing | CSC'12 |

when it does not buy time. The more events that are
scheduled at once, the greater the amount of memory that is
needed to handle them efficiently, in direct proportion to the
number scheduled. Also, the more that the number of events
scheduled vary during the simulation, the more frequently
the data structures should be optimized by “resizing” [3].

Therefore, to help keep the scheduling algorithms ef-
ficient, our microscale simulation programs withhold all
but one event per individual from them. Characteristics of
individuals are maintained in a large array of data structures,
A[n], indexed by individual number n, which ranges from
one to some maximum value. This array includes data of
two types: (1) information about the individual, such as, in
a model of human events, date of birth, sex, geographic
location, and so forth, and (2) a list of all future events
relevant to that individual. This large array is not processed
nor examined by the scheduling routines described in this
paper.

Only the earliest among the events pending for each
individual is entered into the global schedule, with the
data structure A[n] holding the rest. Such withholding of
information has several benefits: (1) the number of events
managed by these algorithms is considerably reduced, (2) the
number of events that must be canceled and rescheduled is
reduced, and (3) the size of the scheduling data structures
are predictable, with precisely one event per individual.
This partly obviates the need for the scheduling algorithms
to maintain separate lists for near, intermediate, and far
future events, as in some variations of calendar queues [11],
and also eliminates the need for time-consuming “resizing”
operations [3].

4. Intuitive view
We want to (1) schedule new events, (2) cancel existing
events, and (3) notify a dispatcher as the time for each
event arrives—all three with maximal efficiency. The coding
details can be subtle, but the overall operation is not. It can
be understood intuitively through a physical analogy.

Assume, for a specific illustration, that half a million
events are to be scheduled over the next five years, and that
they appear more-or-less randomly throughout that period.
Suppose that each event has a ticket with (1) a unique event
number and (2) a scheduled time, represented at least to the
nearest second, but possibly much finer.

Now consider a series of pigeon-hole bins to contain
the tickets, one bin representing each minute of an entire
year. The first bin represents the first minute after midnight
on New Year’s Day, the second bin represents the second
minute, and so forth to the last bin, which represents the last
minute on December 31st. That is 366 days × 24 hours/day
× 60 minutes/hour = 527,040 bins total, each labeled with
the month, day, hour, and minute that it represents. Each
bin also has a flag that can be lowered or raised according
to whether the tickets in the bin are known to be in

chronological order. We assumed half a million events to
be scheduled, less than one event per bin on average.

4.1 Creating a new event

Events are created as the simulation proceeds, each asso-
ciated with a particular individual and with a precisely as-
signed time, usually stochastically assigned. In an ecological
model these may represent a time of birth or death, in
an epidemiological model they may represent the time of
onset of a disease, or the time for transmission to another
individual. In any case, new events arise frequently during
the simulation. The procedure for scheduling a new event is
quite easy:
1. Go to the bin representing the month, day, hour, and minute

for the event. Although the year, second, and any fraction of a
second are not used to select a bin, they are later used to place
events in precise chronological order.

2. Drop the event’s ticket on top of the others in the bin.
3. Raise the flag on the bin to indicate that its tickets may no

longer be in chronological order.

That required only a single operation, regardless of how
many events were in the bin. We take it to be important
merely to drop the ticket atop others in the bin, as above,
rather than trying to sort it into place among other tickets in
the bin. Earlier implementations of calendar queues [3] keep
all bins always sorted, but that can be disabling if a large
number of events accumulate in any bin. Such accumulation
can occur during testing or simulation.

4.2 Canceling an existing event

Once scheduled, events may occasionally have to be can-
celed. For example, in an epidemiological model, a healthy
individual may become the target of an infection. Whatever
the next event in their life was, it may have to be rescheduled
as the simulated individual progresses toward disease and
infectiousness. Therefore, the existing event will be canceled
and the earliest of other future events for the individual will
be scheduled instead. In the physical analogy, that requires
three steps:
1. Go to the bin representing the month, day, hour, and minute for

the event. As before, ignore the year, second and any fraction
of a second.

2. Flip through them to find the ticket for the event in question.
3. Destroy that ticket.

That required one operation for every ticket in the bin,
but on average there is only one ticket in the bin. Canceling
an event can be slow if the events cluster badly, because of
the need to flip through the tickets in the bin. But cancel-
ing is not a usual operation. The two common operations
are adding events (described above) and dispatching them
(described next).

Int'l Conf. Scientific Computing | CSC'12 | 307

4.3 Dispatching the next event
The simulation proceeds stepwise by locating the earliest
among all events in the schedule, removing it, then process-
ing it. This is efficient, but it involves several steps:
1. Go to the bin representing the current day, hour, and minute.
2. If the flag on the bin is raised, arrange the tickets in chrono-

logical order and lower the flag.
3. Leave any tickets for future years in the bin.
4. Process any tickets from this year, day, hour, and minute, each

to be handled precisely in sequence as the scheduled second
and fraction of a second arrives.

5. If any tickets for the current bin arrive while the bin is being
handled, put them in their proper position among the other
tickets.

This required only one operation for each ticket, plus one
or two more per ticket to order them chronologically before
dispatching the contents of the bin. Again, on average there
is only one ticket in the bin.

This method intentionally does not keep tickets in the bins
ordered, using instead “just-in-time sorting.” Usually this
will make little difference, since the bins are intentionally
designed to be nearly empty. However, as described earlier,
if unexpected clustering occurs, this just-in-time sorting will
be much faster than keeping the contents of all bins in order
each time an event is added.

Within a simulation program using these scheduling al-
gorithms, the individual associated with the ticket being
handled will have other pending events in its entry of data
structure A[n]. The simulation program will then pass the
earliest of these to the scheduling algorithms, through a call
to EventSchedule.

The discussion above shows how the algorithms achieve
their speed—by maintaining at least as many bins as there
are tickets. If there were sixty times as many tickets—thirty
million—the same speed of operation could be maintained
simply by increasing the number of bins by sixty, to one bin
for each second.

5. Applications
The algorithms described here have been applied and tested
in a large-scale multi-compartmental epidemiological model
of tuberculosis transmission developed by one of us (A.K.).
That model runs with upwards of 6 × 107 individuals (60
million), representing the entire population of the UK, on
multiple parallel processors for parameter fitting by simu-
lated annealing. Each individual has many events pending,
including, for example, scheduled times of death, emigra-
tion, onset of disease for recently infected individuals, next
transmission for infectious individuals, potential vaccination
for juveniles, and so forth.

In this epidemiological model, typical runs spanned 30
simulated years and used 75 million bins occupied by 60
million individuals. Each run consumed about 80 seconds
on a 2.8 GHz processor, using a little over 6 GB of memory

on each of 30 to 50 parallel processors. The average time
increment between scheduled events was 14 simulated sec-
onds, with a standard deviation of 12 seconds. The minimum
was less than a simulated microsecond, whenever stochastic
events appeared by chance close together in time. The
maximum time increment was 53 simulated seconds. Thus
the time steps are very small compared with a corresponding
macroscale model.

In simplified timing tests on the same processor, outside
of the operation of the epidemiological model, a list with
6 × 107 individuals needed 30 nanoseconds on average to
schedule each new event, 18 nanoseconds to cancel an event,
and 12 nanoseconds to dispatch each event when its time
arrived. This was near-ideal conditions, with new events
arising in sequence in a way that minimized clustering in
the schedule. Expanding the number of individuals by a
factor of more than 16, to 109 individuals (one billion)
required exactly the same amount of time per operation—
within small bounds of statistical error—demonstrating the
Order-1 behavior of the algorithms.

On the other hand, events arising in random order needed
90 nanoseconds to schedule each new event into a list of 60
million and 180 nanoseconds into a list of one billion. The
three to six-fold increase can be attributed to interactions
with internal memory caches. Such caches grow less useful
as memory accesses become less localized.

6. Algorithmic details
The intuitive picture sketched above converts directly into
the algorithms displayed in the appendix. As implemented
in the algorithms, the bins need not correspond to standard
time units such as minutes, but can be any values.

A simulation begins by adding one or more events,
typically one event per individual, and ends either at a pre-
determined time or when the last event has been dispatched.
Array A[n] would be established earlier with a collection of
pending events for each individual n. The main simulation
program would be structured as follows:

[1] ProgramInit();
[2] loop for all n in A[n] :

EventSchedule
(
n, earliest(n)

)
;

[3] loop for t from 0 to tmax:
Process

(
EventNext()

)
;

[4] exit;

In step 1 above, ProgramInit sets the initial conditions for
the program, including allocating all individuals that will
start the simulation and all future events that are known
for each. Step 2 moves through all individuals, selects the
earliest event for each (earliest(n)), and schedules each
event by calling EventSchedule. With all events to start the
simulation scheduled, step 3 repeatedly asks for the next
chronological event by calling EventNext and passing the

308 Int'l Conf. Scientific Computing | CSC'12 |

number of that event to Process. In turn, Process will call
upon EventSchedule and possibly EventCancel and Event-
Renumber while carrying out the simulation. ProgramInit,
Process, and earliest, as well as array A[n], are written
as part of the simulation program. The rest are scheduler
algorithms detailed in the appendix.

The two main data structures organizing the earliest event
for each individual are (1) a circular array of integers Q[h],
each heading a linked list in P [n] of events scheduled for
time bin h, and (2) an array of integers P [n], each continuing
the linked list from Q[n]. The number of entries in P [n]
must equal the number in external array A[n], and like A[n],
P [n] is indexed by individual number. But the number of
time bins Q[h] may be smaller or larger than the number of
individuals. The size of Q[n] is a matter of optimization. It
is typical to have one time bin for each event that could be
scheduled, meaning each bin will represent a single event
on average. A space–time tradeoff occurs because optimal
allocation leaves about one-third of the bins empty.4

Each bin Q[h] represents many related times, all equal
modulo the width of the series of time bins, Qw. The width
Qw of all bins combined is also a matter of optimization.
If it is much too large, events will tend to cluster near the
bin being dispatched. If it is much too small, events will
tend to spread out, with most bins containing events that are
for the more distant future. A suitable value for Qw can be
found by knowledge of the system being analysed, or by
experimental trials to find a good speed of operation.

For speed of addition, the lists of events in P [i] are
not maintained in any particular order, but each bin is
sorted chronologically before it is dispatched. Any sorting
algorithm used should have (1) best performance when the
list is already partially sorted, e.g. Order N , important
because lists will remain partially sorted from earlier passes,
(2) high-speed when sorting only 1 and 2 entries, which are
the most common, and (3) good worst-case performance,
e.g. Order N log2 N . The sorting routine presented as Algo-
rithm 5 in the appendix has these properties.

7. Conclusions
The algorithms presented here can be incorporated into any
individual-based or other microscale model, where they can
speed simulations many orders of magnitude over alternative
methods that are not Order-1.

They are part of a large-scale simulation model developed
by one of us (A.K.) for tuberculosis in the UK. Sixty million
individuals thus can be handled by allocating less than a
gigabyte of random access memory—within the reach even
of portable computers. In practice, these algorithms should
be able to schedule, cancel, and dispatch up to 107 or more
events per second with 60 million or more pending events

4Under random distribution, 1/e = 37% will be empty. That can be shown
to be optimal for overall speed if all bin operations are equally fast.

maintained in the queue. Therefore, they should not become
a bottleneck in the simulation as a whole.

Compilable copies of the code described here and related
simulation algorithms are available free from the authors
upon request.

8. Acknowledgements
We thank Fred Lehman, Holly MacCormick, Peter Hawth-
horne, Ben Kerr, Celia Hemmerich, and Shelby Williams for
discussions and encouragement. The project was supported
in part by a resident fellowship grant to C.L. from the UMN
Institute on the Environment, by grants of computer time
from the Minnesota Supercomputer Institute, and by doctoral
research funding to A.K. from the Modelling and Economics
Unit at the Health Protection Agency, London.

9. Contributions
C.L. considered the notion of stochastically prescheduling
the earliest future event for each individual and developed an
initial application. A.K. expanded the approach for her large-
scale tuberculosis model, leading to refinements in the algo-
rithms. A.K. conceived a grouping method to work in concert
and make these algorithms practical for multi-compartment
simulation models [8]. R.B. participated in the evaluation,
applications to other areas, and the literature review. C.L.
coded the algorithms and A.K. tested them in large-scale
operation. All authors contributed to the manuscript.

References
[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

“Numerical recipes: The art of scientific computing, third edition,”
Cambridge University Press, New York, 2007.

[2] D. T. Gillespie, “Exact stochastic simulation of coupled chemical
reactions,” Journal of Physical Chemistry, vol. 81, pp. 2340–2361,
1977.

[3] R. Brown, “Calendar queues: a fast 0(1) priority queue implementation
for the simulation event set problem,” Commun. ACM, vol. 31, no. 10,
pp. 1220–1227, Oct. 1988.

[4] R. Rönngren, J. Riboe, and R. Ayani, “Lazy queue: an efficient im-
plementation of the pending-event set,” SIGSIM Simul. Dig., vol. 21,
no. 3, pp. 194–204, Apr. 1991.

[5] G. A. Davidson, “Calendar p’s and q’s,” Communications of the ACM,
vol. 32, pp. 1241–1242, 1989.

[6] T. Hui and I. Thng, “Felt: A far future event list structure optimized
for calendar queues,” Simulation, vol. 78, no. 6, pp. 343–361, 2002.

[7] G. Yan and S. Eidenbenz, “Sluggish calendar queues for network
simulation,” in Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, 2006. MASCOTS 2006. 14th IEEE
International Symposium on, 2006, pp. 127–136.

[8] A. Keen and C. Lehman, “Trading space for time: Constant-speed
algorithms for grouping objects in scientific simulations,” Proceed-
ings, International Conference on Scientific Computing., pp. 146–151,
2012.

[9] A. I. Dumey, “Indexing for rapid random access memory systems,”
Computers and Automation, vol. 6, pp. 6–9, 1956.

[10] D. E. Knuth, “The art of computer programming, volume 3: Sorting
and searching, second edition,” Addison-Wesley, Reading, MA, 1998.

[11] R. Goh and I. Thng, “Mlist: An efficient pending event set structure
for discrete event simulation,” International Journal of Simulation-
Systems, Science & Technology, vol. 4, no. 5-6, pp. 66–77, 2003.

Int'l Conf. Scientific Computing | CSC'12 | 309

10. Appendix
To use the algorithms described in this paper, it is only
necessary to understand the entry and exit conditions that
appear at the beginning of each, not the code itself. Nonethe-
less, to allow complete evaluation of the algorithms, and to
encourage further development of them, we present them as
pseudo-code inspired by and simplified from the program-
ming languages C, Python, and R. The algorithms are defined
with sufficient precision that they can be run, tested, timed,

modified, or translated to other languages. Familiarity with a
relatively few operators∗ and with the syntax of flow control
(if, for, while, etc.), is sufficient to follow the algorithms.
WarnMsg and ExitMsg display error messages and the latter
terminates the program. Not all functions return values. Text
copies of this pseudo-code translated into operational C
are available from the authors upon request, or from the
associated website www.cbs.umn.edu/modeling.

PROGRAM PARAMETERS

TN ≡ (100000000) Example, maximum number of time bins.
PN ≡ (100000003) Example, maximum number of forward indexes to time bins.
TW ≡ 20 Example, time width of all bins combined (for optimization).

INTERNAL DATA STRUCTURES

PZ ≡ −1 Marker for empty bins.

real T [PN] ← 0; Time for each scheduled event.
integer P [PN] ← PZ; Forward indexes within bins, ending with zero.
integer Q[TN] ← 0; First index for the bin, with zero for empty bins,

negative for unsorted bins.
real Qw ← TW; Interval of time represented for each cycle in Q.
integer Qn ← TN; Number of elements in Q.
integer Qi ← 0; Index of the immediate time bin.
integer Qe ← 0; Number of events in all bins.

real Qt0 ← 0; Earliest time representable this cycle in Q.
real Qt1 ← TW; Earliest time beyond this cycle in Q.
real t ← 0; Current time, last dispatched event.

Algorithm 1. SCHEDULE A NEW EVENT

Upon entry to the algorithm, (1) n contains the number (starting with 1) of a new event. (2) te contains the
time at which the new event will occur. (3) P [n] indicates that the event is unscheduled (equal to PZ). (4) The
scheduling data structures are prepared as described above. At exit, (1) the event has been scheduled, to occur
when the proper time arrives. (2) T [n] records the time te of the event. (3) P [n] links the event with others in
its time bin.

EventSchedule(n, te) integer n, real te; integer i; real tr;
if n < 1 or n ≥ PN: ExitMsg(3); 1. Check the index and make sure an
if P[n] 6= PZ: ExitMsg(4); event is not already scheduled
if te < t: ExitMsg(5); and is not in the past.

te → T[n]; 2. Record the time of the new event.

(te− Qt0)/Qw → tr; tr − (int)tr → tr; 3. Convert the time to a bin number.
tr∗Qn → i;

abs(Q[i]) → P[n], −n → Q[i], ↑Qe; 4. Add the event to the list for that bin
and increment the number of events.

* The pseudo-code given here is two-dimensional, as in the language
Python, so that indentation completely defines the nested structure,
with no need for bracketing characters such as ‘{’ and ‘}’. Variables
and function names are italicized and flow control and reserved
words are bolded.

The assignment operator is represented either as ‘←’ or ‘→’,
similar to assignments in R. The compound assignments ‘a + 1 →
a→ b→W [i][j]’ and ‘W [i][j]← b← a← a+1’ are equivalent,
first incrementing a and placing the results back in a, then in b, and
then in the i, jth element of the array W .

The expression structure ‘c ?u : v’, where c is a condition, u is

an if-expression, and v is an else-expression, follows that of C. Using
up-tick and down-tick operators to write ‘ ↑a’, ‘ ↓a’, ‘a ↑ ’, and ‘a ↓ ’
form pre- and post-increments by one, as in ‘++a’, ‘--a’, ‘a++’,
and ‘a--’ of C.

Arrays are indexed as in the language C, starting with 0. Data
types are ‘integer’ and ‘real’, with the latter specifying floating
point. Operator precedence is that of C, with assignments having
lowest precedence. Logical operators such as ‘and’ and ‘or’ are
preemptive, terminating a chain of logical operations as soon as
the result is known. Permanent global assignments, as would be
represented ‘#define α β’ in C, are rendered as ‘α ≡ β’.

310 Int'l Conf. Scientific Computing | CSC'12 |

Algorithm 2. CANCEL AN EXISTING EVENT

Upon entry to the algorithm, (1) n contains the number (starting with 1) of the event to be cancelled. (2) T [n]
contains the scheduled time of the event. (3) the scheduling data structures are prepared as described above.
At exit, the event has been removed from the list.

EventCancel(n) integer n; integer i, j, jp; real tr;
if n < 1 or n ≥ PN: ExitMsg(6); 1. Check the index and make sure an
if P[n] = PZ: ExitMsg(7); event is scheduled.

(T[n]− Qt0)/Qw → tr; tr − (int)tr → tr; 2. Convert the time to a bin number,
tr∗Qn → i; modulo the duration of the cycle.

if subcancel(n, i): return; 3. Remove it from its normal bin
(i− 1 + Qn) mod Qn → i; if subcancel(n, i): return; or from an adjacent bin above or
(i + 2 + Qn) mod Qn → i; if subcancel(n, i): return; below (due to rounding error).

ExitMsg(8); 4. If the specified event was not in
the list, signal an error.

integer subcancel(n, i) integer n, i; integer j, jp;
0 → jp, abs(Q[i]) → j;
loop while j > 0: 1. Scan the list of pending events in

if j = n: this bin and remove the specified
if jp > 0: P[j] → P[jp]; event. (The average number of events
else Q[i] > 0?P[j]: − P[j] → Q[i]; in non-empty bins is about 1.5)
PZ → P[j]; if ↓Qe < 0: ExitMsg(9);
return 1;

j → jp, P[j] → j;

return 0;

Algorithm 3. DISPATCH THE NEXT EVENT

Upon entry to the algorithm, (1) T contains the time for each scheduled event. (2) The scheduling data structures
are prepared as described above. At exit, (1) EventNext contains the number of the next event. If zero, no
events are scheduled. (2) t contains the time of the next event, if NextEvent is not zero.

integer EventNext() integer j, n;
loop while Qe > 0:

loop while Qi < Qn: 1. Advance to the next non-empty
Q[Qi] → j; if j = 0: ↑Qi; repeat loop; bin.

if j < 0: 2. Sort the bin if it may be necessary
sort(P, − j, 0, order) → Q[Qi] → j; (usually sorts 1 or 2).

if T[j] < Qt1: 3. If the event belongs to this pass,
if P[j] = PZ: ExitMsg(2); remove it, decrement the number of
P[j] → Q[Qi], PZ → P[j], ↓Qe; events, advance the time, and return
T[j] → t; return j; its index.

↑Qi; 4. Advance to the next bin and repeat.

0 → Qi, Qt0 + Qw → Qt0, Qt0 + Qw → Qt1; 5. Circle back to the first bin.

return 0; 6. Signal completion of all events.

Algorithm 4. RENUMBER AN EVENT

Upon entry to the algorithm, (1) n contains the new index number, which has no event scheduled. (2) m
contains the current index number of the event. At exit, (1) n is the new index number. (2) The event originally
scheduled as m is re-scheduled as n. Event m no longer has an event scheduled and the index is free to be
reused.

EventRenumber(n, m) integer n, m;
if n < 1 or n ≥ PN: ExitMsg(10); 1. Check the indexes and make sure
if m < 1 or m ≥ PN: ExitMsg(11); they are in range.

if n 6= m:
T[m] → T[n]; 2. Transfer the time.
EventCancel(m); 3. Cancel the old number.
EventSchedule(n, T[n]); 4. Reschedule as the new number.

Int'l Conf. Scientific Computing | CSC'12 | 311

Algorithm 5. SORTING

Upon entry to the algorithm, (1) list points to an array of forward indexes. list[0] is unused. (2) p indexes the
first element of the list, which ends with a zero. (3) n contains the number of items in the list, if known. If zero,
the number of items is not known and sort should count. (4) c compares two list elements u and v. It returns
negative, zero, or positive when u < v, u = v, and u > v, respectively. At exit, sort indexes the first element
in the sorted list, which ends with a zero. The original ordering is preserved for entries that are equal.

integer ∗P, pc, pr, m, (∗order)(int, int);

integer sort(list, p, n, c) integer list[], p, n, (∗c)(int, int); integer i;

c → order, list → P; 1. Record calling parameters.

if n = 0: p → i; loop while i > 0: P[i] → i, n ↑; 2. Count the number of elements and
if n = 0 or p = 0: return 0; return empty and single-element
if n = 1: return p; lists immediately.

if n = 2: 3. If the list contains only two
if order(p, P[p]) ≤ 0: return p; elements, sort it by inspection.

P[p] → i, p → P[i], 0 → P[p];
return i;

p → pc; return isort(n); 4. Otherwise sort the full list.

Partition into sorted sublists. Upon entry, (1) n defines the minimum number of elements to be sorted. (2) P
is the list of forward indexes. (3) pc indexes the first element of the list. (4) order compares two list elements.
At exit, (1) isort indexes the first element in the sorted list, which ends with a zero index. (2) m defines the
number of elements which were actually sorted, greater than or equal to its value on entry. (3) pc indexes the
element following the last element sorted. If the entire list has been sorted, pc is null.

integer isort(n) integer n; integer wp1, wp2, m1;
if n ≤ 1: 1. If a single element is requested,

if pc = 0: return 0; initialize variables and check for
pc → wp1, 0 → m; error in count.

loop : pc → pr, P[pc] → pc, m + 1 → m; 2. Then scan forward in the list to find
if pc = 0: return wp1; the longest list that is already in
if order(pr, pc) > 0: exit loop; order and return that list.

0 → P[pr]; return wp1;
3. If multiple elements are requested,

isort(n/2) → wp1; sort the first part of the list
if n ≤ m: return wp1; and return if enough was sorted.

m → m1, isort(n− m) → wp2, m + m1 → m; 4. If it was not, then sort what remains
return imerge(wp1, wp2); and merge the two sublists.

Merge sublists. Upon entry, (1) P is the list of forward indexes. (2) p and q index the first element of a sorted
primary and secondary list, respectively. (3) order compares two list elements. At exit, imerge indexes the first
element of the list merged in order. In case of equal entries, those from the primary list appear first.

integer imerge(p, q) integer p, q; integer pb, v;
if p = 0: return q; if q = 0: return p; 1. Handle empty lists.

if order(p, q) > 0: q → pb, 1 → v; 2. Save the beginning of the list
else p → pb, 3 → v; and select the proper routine.
loop while v > 0:

loop while v = 1: q → pr, P[q] → q; 3. Scan for a secondary element
if q = 0: − 2 → v; greater than or equal to the
else if order(p, q) ≤ 0: 2 → v; current primary element and mend

if v = 2: p → P[pr]; the secondary list.

loop while v ≥ 2: p → pr, P[p] → p; 4. Scan for a primary element
if p = 0: − 1 → v; greater than the current
else if order(p, q) > 0: 1 → v; secondary element, mend the

if v = 1: q → P[pr]; primary list, and repeat.

if v < −1: p → P[pr]; else q → P[pr]; 5. Attach any remaining elements and
return pb; return the merged list.

312 Int'l Conf. Scientific Computing | CSC'12 |

