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abstract: Formany taxa and systems, species richness peaks atmid-
elevations. One potential explanation for this pattern is that large-
scale changes in climate and geography have, over evolutionary time,
selected for traits that are favored under conditions found in contem-
porary midelevation regions. To test this hypothesis, we use records of
historical temperature and topographic changes over the past 65 Myr
to construct a general simulation model of plethodontid salamander
evolution in eastern North America. We then explore possible mech-
anisms constraining species to midelevation bands by using the model
to predict plethodontid evolutionary history and contemporary geo-
graphic distributions. Our results show that models that incorporate
both temperature and topographic changes are better able to predict
these patterns, suggesting that both processes may have played an im-
portant role in driving plethodontid evolution in the region. Addition-
ally, our model (whose annotated source code is included as a supple-
ment) represents a proof of concept to encourage future work that
takes advantage of recent advances in computing power to combine
models of ecology, evolution, and earth history to better explain the
abundance and distribution of species over time.

Keywords: paleoclimatology, climate history, agent-basedmodel (ABM),
general simulation model (GSM), eco-evo, phylogenetic reconstruction.

Introduction

Peaks in species richness at midelevation bands have been
observed in ecosystems and taxa around the globe (Rahbek
1995). A number of ecological processes may contribute to
this “hump-shaped” distribution, including varying auto-
trophic productivity (Rosenzweig 1995), trade-offs between

competitive ability and environmental tolerance (Gifford
and Kozak 2012), and differences in area and isolation,
which often reach their respective maximum andminimum
atmidelevations (Sanders2002).Evolutionaryprocesseshave
also been suggested; however, they are more difficult to sup-
port, as it is often unclear how speciation and extinction rates
have changed over time (Morlon 2014).
We propose to address this question using plethodontid

salamanders as a model system. These salamanders are of-
ten used as model organisms for studies combining ecology
and evolutionary biology (Bruce et al. 2000). Nearly all of
the ∼450 extant plethodontid species are found in North or
Central America (Min et al. 2005; AmphibiaWeb 2016),
and there is substantial evidence that the family originated
in the southernAppalachians (Wilder andDunn1920;Dow-
ling 1956;Mueller et al. 2004;Herman andBouzat 2016) 48–
79 Mya (Kozak et al. 2009; Martin et al. 2016). In eastern
North America, their current range is largely contiguous,
stretching across most of the United States and southern
Canada east of the Mississippi River (Herman and Bouzat
2016). Plethodontids are therefore a particularly tractable
system for studying long-term patterns of speciation, as the
clade appears to have originated, diversified, and persisted
within a relatively distinct geographic region.
Using phylogenetic and species distribution data for east-

ernNorthAmericanplethodontids, Kozak andWiens (2010)
argue that evolutionary stasis could be a mechanism driving
worldwide patterns of species richness along elevation gra-
dients.The authors showed thatplethodontid richnesspeaks
along midelevation bands in the Appalachians and sug-
gested that this is due to increased “time for speciation” in
these regions. They cite several possible mechanisms that
could lead to evolutionary stasis withinfixed elevation bands,
including interspecific competition and daily variation in
temperature and moisture. However, the evolutionary his-
tory of plethodontids has coincided with dramatic environ-
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mental and geographic change, complicating this explana-
tion. Since the early Permian, the Appalachians have likely
lost more than half their original elevation (Slingerland and
Furlong 1989). Similarly, over the past 65 Myr there have
been large and rapid fluctuations inmean global temperature
(Zachos et al. 2001). Such events present a dynamic backdrop
for evolution, with potentiallymajor impacts on species’ evo-
lutionary histories (Ricklefs et al. 1999; Rangel et al. 2007).
For example, recent molecular work suggests that both the
phylogenetic and the geographic relationships amongPletho-
don serratus subpopulationshavebeen strongly influencedby
changes in regional climate throughout the Pleistocene (The-
sing et al. 2016).

We hypothesize that variation in temperature and topog-
raphy, rather than elevation gradients per se, have changed
and constrained the ranges of plethodontid salamanders over
their evolutionary history. Because salamanders are small,
ectothermic, and relatively poor dispersers, they are sensitive
to changes in temperature, and species ranges are often re-
stricted to specificmicroclimates determined by local temper-
ature and moisture (Carfioli et al. 2000; Gifford and Kozak
2012; Thesing et al. 2016). Large-scale changes that have
caused the area available at any particular range of temper-
atures to vary substantially over time have therefore also
potentially changed the space and resources available to sal-
amander species with limited temperature tolerances. If con-
ditions currently found in midelevations were historically
more common than other conditions, then it would stand
to reason that these regions are also disproportionately spe-
cies rich. This would be particularly evident if processes such
as those cited by Kozak andWiens (2010) prevented species
from adapting to other conditions that have been less histor-
ically common.

To evaluate the influence of changes in temperature and
topography, we focus on 95 Appalachian plethodontid taxon
groups found primarily east of the Mississippi River. These
include 79 recognized species and 16 undescribed lineages,
including all 82 lineages from Kozak and Wiens (2010) and
13 additional species fromKozak et al. (2009; for the full spe-
cies list, see the appendix, available online). In all, this ac-
counts for all but six of the described species in the region.
We used these data, including species’ ranges, richness, and
phylogenies, to construct a general simulation model (GSM)
of plethodontid evolution (Rangel and Diniz-Filho 2005;
Rangel et al. 2007; Gotelli et al. 2009). GSMs are useful when
processes are too complex to analyze analytically (Colwell
et al. 2012) and include a wide class of computational meth-
ods topredict species’ responses to the joint influencesof evo-
lutionary and ecological processes.

We used this model to emulate species trait evolution and
community dynamics over 65 Myr of historical climate and
topographic change in eastern North America. Next, we pa-
rameterized alternate versions of this model for scenarios

where temperature and elevation either change through time
or remain static. Finally, we compared model fits across
scenarios to testwhether including the historical information
significantly improved predictions.

Methods

The complete, annotated code used to run the simulations
described here is available as part of the supplemental ma-
terial online and is also accessible online at https://github
.com/r-barnes/BarnesClark2017-Salamanders.1 More spe-
cific details regarding our simulation, phylogenetic recon-
struction, and optimization methods are also available in
the appendix.
Our GSM tracks the evolutionary history of a single pro-

genitor species and all of its descendant species from an or-
igin 65Mya to the present. Since it would be computationally
prohibitive to simulate millions of individual salamanders,
each species is instead represented by one or more “popu-
lations” that span larger spatial and temporal scales than
would an individual. Biologically, these populations might
be thought of as demes—subgroups whose trait and genetic
differences are small relative to the species as a whole. In
our model, we assume that individuals within a population
are spatially proximal, share the same traits, and are genetically
identical. Between populations, these aspects can vary, which
leads to within-species variation in traits, relatedness, and
geographic range. The “abundance” of a species in our model
is therefore determined by the number of populations of that
species summed across all spatial bins. If multiple popula-
tions of a species share the same spatial bin at the same time,
these populations can “breed” (representing interactions be-
tween individuals from the two populations), generating a
new “child” population, as described in “Breeding.” Over
time, mutations can accumulate (generally because popula-
tions move to new elevation bands and become reproduc-
tively isolated from other populations of the same species).
If the genetic differences among populations within a single
species become large enough as a result of this, the popula-
tions diverge into separate species.
The model progresses in discrete, uniform time steps.

Within each time step, several events occur: (a) populations
suffer mortality based on how their optimal temperature
differs from their environment as well as the local density
of con- and heterospecifics (i.e., the number of populations
per unit area in each elevation bin; see details in “Mortal-
ity”); (b) the surviving populations breed to produce new
populations, during which genetic mutations and crossover
may result in new species (“Breeding”); and (c) both the

1. Code that appears in The American Naturalist is provided as a conve-
nience to the readers. It has not necessarily been tested as part of the peer re-
view.
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parent and the child populations have an opportunity tomi-
grate to higher or lower elevations (“Temperature and To-
pographic Change”). As topography and temperature vary
in simulation time, the total area available at any given tem-
perature fluctuates, thereby subjecting species to changing
selective pressures, leading to re-creations of potential evo-
lutionary histories.

Knobs and Scenarios

Because GSMs are complex, it is helpful to design themwith
“control knobs,” which can be toggled to test different
scenarios and assumptions (Gotelli et al. 2009). Our GSM
contains two primary control knobs: TEMPERATURE and ELE-

VATION (“Temperature and Topographic Change”). When
these knobs are “off,” we hold their conditions constant
for the whole simulation; when they are “on,” we vary con-
ditions following historical patterns. Our GSM also includes
seven parameters that are directly optimized to match ob-
served patterns and five secondary control knobs. We use
these optimized parameters and secondary knobs to provide
the best possible model fit for testing our primary hypothe-
ses about temperature and topography and to test the effects
of various model assumptions

The seven optimized parameters are as follows: m and j,
which control the mutation rates of species relatedness and
temperature optima, respectively (for details, see “Breed-
ing”); p, which controls the threshold for speciation (“Breed-
ing”); w0 and wT, which control mortality rates as a function
of temperature (“Mortality”); and wC and wH, which control
the strength of con- and heterospecific competition, respec-
tively (“Mortality”). The secondary control knobs are COM-

PETITION (“Mortality”), DISPERSAL (“Dispersal”), ANCESTRAL

ELEVATION (“Temperature and Topographic Change”), REIN-

VASIONS (“Dispersal”), and TIME STEP (which sets the model’s
time step to either 0.5 or 0.1 Myr). The effects of these knobs
are discussed in the indicated sections.

Temperature and Topographic Change

In our model, temperature at a given time varies depending
on local elevation following the adiabatic lapse rate of dry
air, 29.87C/km. If the TEMPERATURE knob is on, then tem-
perature also changes over time according to historic data
on global temperature change (Zachos et al. 2001; for de-
tails, see the appendix). The time series for sea-level tem-
perature is shown in figure 1a.

We discretize space into a series of 50 equally spaced bins
representing the total area available at different elevation
bands. To characterize the contemporary area available as
a function of elevation, we used data from WorldClim cor-
responding to the contemporary range of plethodontids
east of the Mississippi River, collated in Kozak and Wiens

(2010, their table 1). If the ELEVATION knob is off, then these
modern elevation data are used to describe topography. If
the ELEVATION knob is on, then the area available in each
bin varies over time following the region’s orogenic history,
which is driven largely by the erosion of the Appalachians
(for details, see the appendix). As erosion occurs, higher
bins are removed. We also tested two settings for the ANCES-

TRAL ELEVATION knob: the original plethodontid ancestor was
placed either (a) at sea level or (b) at the middle of the initial
elevation range.
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Figure 1: Time trends predicted from thefitted scenario with elevation
and temperature change (scenario ET). Lines show means 5 1 SD.
a, Temperature trend over time (black line) and species richness (or-
ange line). b, c, Rates for speciation (blue) and extinction (red). Darker
regions show overlap between confidence intervals.
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Breeding

In our model, each salamander population is described by
three traits: a species ID, a neutral genome used to test relat-
edness, and an optimal temperature Topt at which the sal-
amander’s temperature-dependent mortality (“Mortality”)
is at a minimum. Breeding events take place between “par-
ent” populations and give rise to new “child” populations,
which can themselves become parent populations in the
next time step. Randomly chosen pairs of populations breed
with each other, but only if they are conspecific (share a spe-
cies ID), share at least fraction p of the characters in their
genotype, and are located in the same elevation bin, which
implies close geographic proximity of the populations. For
details, see the appendix.

The neutral genome that determines relatedness is im-
plemented as a 64-bit field that changes independently of
the salamander’s optimal temperature. Child populations
inherit these characters from either of their parents with a
50%probability, plus an additionalmutation probability de-
termined by m. Optimum temperature follows a random
walk, whereby child populations inherit the average trait
values of their parents plus a randommutation drawn from
a normal distribution with mean zero and standard devia-
tion j.

Mutations may accumulate over time, leading to geno-
type divergence in reproductively isolated populations. If
these differences exceed a fraction p, then the populations
can no longer breed, and we consider them to bemembers of
separate species. Speciation is therefore an emergent charac-
teristic of our model, which can arise through any mecha-
nism that imposes reproductive isolation. Most frequently,
this occurs through geographic isolation (i.e., allopatric spe-
ciation) among populations that have dispersed to differ-
ent elevation bins. Reproductive isolation could also occur
within a single elevation bin through random chance (i.e.,
sympatric speciation), although geographic proximitymakes
this unlikely.While technically possible, this secondmode of
speciation is rare in our model.

Mortality

Each population has a per-time-step mortality probability
determined by the density of con- and heterospecifics in its
bin as well as the degree to which its optimal temperature is
mismatched to its environment. Note that population mor-
tality leads to extinction events only if all populations that
make up a particular species die out.

At each time step, a population has a probability of dy-
ing out given by the following logistic function:

L p wT(Topt 2 Tbin)
2 1 wHAH 1 wCAC 1 w0, ð1Þ

Pr[death] p 1=(11 exp(2L)): ð2Þ

This is effectively a stochastic Lotka-Volterra competition
equation, where w0 describes the base mortality rate, wT

describes changes in mortality attributable to deviations in
the population’s optimal temperature Topt from the environ-
ment’s temperature Tbin, and wC and wH describe, respec-
tively, the influence of competition between con- and hetero-
specifics, expressed by their respective abundances per unit
area, AC and AH.
These latter parameters enforce a soft “carrying capac-

ity” for the bin when wC 1 0. Thus, bins with smaller areas
will generally support fewer populations, and populations
are less likely to persist in a bin if the bin’s temperature is
far from their optimum temperature. When many popula-
tions are present, mortality increases. We test three settings
for the COMPETITION knob: (a) no heterospecific competition
(wH p 0), (b) equal conspecific/heterospecific competition
(wH p wC), and (c) unequal conspecific/heterospecific com-
petition (wH and wC are optimized separately as two inde-
pendent parameters).

Dispersal

We test three settings for the DISPERSAL knob. Depending on
this, at each time step a population has a 50% probability of
migrating to (a) a randomly chosen bin neighboring their
current bin (random local dispersal), (b) a neighboring bin
that more closely matches their optimal temperature (di-
rected local dispersal), or (c) a randomly chosenbinanywhere
along the elevation gradient (global dispersal). Dispersal rate
is therefore controlled by time step length.
Although plethodontids are thought to have originated

in the southern Appalachians, there is some evidence that
lineages that initially dispersed out of eastern North Amer-
ica later reinvaded the region as many as four times (Martin
et al. 2016). The REINVASION knob accounts for this. When it
is on, populations have a 0.1% chance per time step of leav-
ing the simulated region. Once they leave, populations per-
sist and mutate but do not compete or experience temper-
ature and elevation fluctuations. They have a 0.1% chance
per time step of reinvading the simulated region. In simu-
lations, this typically leads to the first successful reinvasion
by an outside lineage around 50 Mya, with additional in-
vasions becoming more frequent as time moves forward,
roughly matching the hypothesized historical invasion his-
tory of Martin et al. (2016).

Empirical Metrics

We compared our simulation results for extant species (i.e.,
those present 0 Mya) to empirically observed patterns and
molecular phylogenies based on six metrics. Four of these
have been suggested previously as important for analyzing
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GSMs (Gotelli et al. 2009; Morlon 2014): (a) total species
richness (i.e., number of species), (b) total species with the
middle of their elevation range falling in each elevation bin,
(c) species elevational range-size frequency distributions, and
(d) lineages-through-time (LTT) plots. We also include two
additional metrics: (e) Pybus and Harvey’s g statistic (Pybus
and Harvey 2000), which better characterizes recent diver-
gence events, and ( f ) Blomberg’s K statistic (Blomberg et al.
2003), which we use to characterize the relationship between
phylogenetic distance among species and differences in tem-
perature at themiddle of their elevational range (an empirical
proxy for optimum temperature).

For metrics a–c, we used the richness and distributional
data from Kozak and Wiens (2010) and matched them to
the elevation bins from our simulation. For metrics d–f, we
used the published phylogeny from Kozak et al. (2009). We
use this phylogeny because it corresponds directly to the
lineages in Kozak and Wiens (2010) and because its topol-
ogy closely matches that of a more recent study by Martin
et al. (2016). To account for uncertainty in divergence times
for the molecular phylogeny, we used the aligned sequences
andmethods from Kozak et al. (2009) to reconstruct 10,000
bootstrapped replicates of the maximum likelihood phy-
logeny in RAxML (ver. 8.2.9; Stamatakis 2014). We then
time-calibrated the resulting trees on the basis of the age
constraints from Kozak et al. (2009) using the PATHd8 al-
gorithm (Britton et al. 2007) implemented in phyloGener-
ator (Pearse and Purvis 2013). We then calculated metrics
d–f for all 10,000 trees, resulting in an empirical frequency
distribution for each metric (for details, see the appendix).

Model Fitting and Scenarios

To optimize the seven parameters (“Knobs and Scenarios”)
in our model, we used a simulated annealing algorithm to
maximize the likelihood of observed data given simulated
predictions across all six empiricalmetrics (“EmpiricalMet-
rics”). Because these metrics involve different numbers of
comparisons (e.g., there is only a single observed species rich-
ness to compare, but there aremany observations across time
for the LTT plot), likelihoods vary by orders of magnitude
across metrics even when models fit well. This leads some
metrics to have a disproportionately strong effect on the op-
timization. To prevent this, we calculated a likelihood ratio
for eachmetric by taking the raw likelihoods for the observed
data given the model and dividing them by the likelihood
that would be expected for the observed data if it perfectly
matched the simulated distribution. We then minimized the
value of this metric, which maximized the weighted model
likelihood. This ensured that the log-likelihood ratios of each
metric were generally within the same order of magnitude,
giving the metrics roughly equal weight in our optimization
process. For details, see the appendix.

Because there were almost 300 potential configurations of
the secondary knobs (“Knobs and Scenarios”) in our GSM,
we used a forward selection procedure to determine the best
position for them (see the appendix). This led us to a config-
uration with shared conspecific/heterospecific competition,
random local dispersal, midelevation ancestral origin, no re-
invasions, and a time step of 0.5 Myr.
To test whether including information about temperature

and topographic change improved the GSM’s fit, we opti-
mized on the above best configuration using the two primary
knobs. This gave four different scenarios: TEMPERATURE and
ELEVATION knobs off (scenario N), only the ELEVATION knob
on (scenario E), only the TEMPERATURE knob on (scenario T),
and both knobs on (scenario ET).
To test the effects of some of our model assumptions, we

also optimized the ET scenario for all possible single-knob
deviations from the best configuration of the five secondary
knobs. This gave seven additional scenarios: two for the DIS-

PERSAL knob, two for the COMPETITION knob, one for the AN-

CESTRAL ELEVATION knob, one for the REINVASION knob, and
one for the TIME STEP knob. We then ran 5,000 iterations for
each of these four primary and seven secondary scenarios
at their maximum likelihood parameter estimates to calcu-
latemodel likelihoods and distributions for each of ourmet-
rics. Finally, to test for significant differences in likelihood
between models, within each of the primary and secondary
scenarios we bootstrapped by resampling 5,000 iterations
with replacement and calculated the likelihood for each it-
eration.

Results

For the total fit across all six metrics, the ET scenario, which
included both elevation and temperature changes through
time, provided significantly better fits than the E, T, and N
scenarios; the last fit the worst (table 1). For the seven sec-
ondary scenarios we tested, all provided significantly worse
total fits than the regular ET scenario, with the exception of
two (the global and directed DISPERSAL knob scenarios, and
the REINVASION knob on) for which the total fit was not sig-
nificantly different.
For the LTT plot and predictions of extant species rich-

ness (which simply reflects the LTT plot at 0 Mya), the ET
scenario matched observed trends reasonably well (fig. 2a,
2d), although the richness predictions followed a bimodal
distribution. The best predictions came from the scenario
with the DISPERSAL knob set to directed. For both the random
and the directed DISPERSAL knob settings, the ET scenario
matched the general trend from the molecular phylogeny,
with an accumulation of roughly 0.5 lineages per million
years for the first 40Myr of the simulation, increasing to five
lineages permillion years for thepast 15–20Myr (figs. 2a, 3a).
Setting the ANCESTRAL ELEVATION knob to low technically gave
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a lower likelihood ratio, but it predicted an average of 150 ex-
tant species and performed well because of a very broad dis-
tribution for simulated values.

For species’ midelevation distribution, predictions from
the ET scenario closely matched the observed hump-shaped
trend (fig. 2b). Several of the secondary scenarios provided
significantly better fits with qualitatively similar results, but
differences in likelihood were small. For the species eleva-
tion range distribution, the ET scenario significantly out-
performed all other primary and secondary scenarios except
for the T scenario, although again, these predictions were
qualitatively similar to those from the ET scenario. For all
models, the fit for elevation range was relatively poor, with
significantly too few species with elevation ranges greater
than 1,000 m and significantly too many with ranges of 0 m
(fig. 2c).

As with richness, ET predictions for the g statistic pro-
duced a bimodal distribution including both positive and
negative values (fig. 2e). For theK statistic, the ETmodel pre-
dicted values that were significantly less than 1 but skewed
somewhat lower than those from the molecular phylogeny

(fig. 2f ). Nevertheless, likelihoods for the ET model were
significantly greater than those for the other primary scenar-
ios, with the exception of the T scenario, which fit the g sta-
tisticsignificantlybetter.Amongthesecondaryscenarios, sev-
eral outperformed the ET scenario for these metrics, and the
multiple-reinvasions scenario providedparticularly goodpre-
dictions for both the g and the K statistic (fig. 3c, 3d).
TheETscenariopredictedsmoothtimetrends fortotal spe-

cies richness (fig. 1a), speciation and extinction rates (fig. 1b),
and per capita speciation and extinction rates (fig. 1c). In
general, speciation exceeded extinction for the first 15 Myr
of the simulation, leading to a rapid accumulation of species,
followed by a slightly higher extinction than speciation rate,
leading to a gradual total decline in richness. This broadly
matched trends in the E and T scenarios, although scenarios
without elevation change did not experience net loss of spe-
ciesover time.Conversely, speciationandextinctiondynam-
ics for many of the secondary scenarios, including the two
best-fitting scenarios—directed dispersal (fig. 3e) andmulti-
ple reinvasions (fig. 3f )—appeared to be strongly driven by
temperature changes, with peaks in extinction rate corre-
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sponding to periods of rapid temperature change around 50,
25, and 15 Mya.

Discussion

Our results suggest that changes in temperature and eleva-
tion jointly influenced the evolutionary history of plethodon-
tid salamanders in the populations we consider. This was by
no means a foregone conclusion: although they utilize dif-
ferent information about historical environmental dynam-
ics, the N, E, T, and ET scenarios all include the same num-
ber of model parameters, and there is no analytical reason to
assume that the more “complex” scenarios should yield bet-
ter predictions. Our findings are consistent with results for
several plethodontid species from the North American inte-
rior highlands that attribute geographic distributions and
phylogenetic relationships to a combination of climate and
topographic factors, particularly during the Pleistocene era
(Martinetal. 2016;Thesingetal. 2016).Thisalsoaccordswith
findings for the Eurycea bislineata species complex east of
theMississippi River, which suggests that small changes in to-
pography—and particularly in historical drainage basins—
explain phylogenetic relationships (Kozak et al. 2006).

Unlike these existing studies, our results apply to a larger
set of lineages and rely on mechanisms that act at substan-
tially larger spatial and temporal scales. Nevertheless, it has
been suggested previously that large-scale climate and geo-
graphic changes are importantdrivers of evolutionary change
(Ricklefs et al. 1999). For example, dramatic shifts in commu-
nity composition and species ranges resulting from climate
change have been recorded among terrestrial plant and ani-
mal communities, particularly over the past 12 kyr in eastern
NorthAmerica (Jackson andOverpeck 2000). Similarly, over
the past few hundred thousand years, Milankovitch climate
forcing has been posited as amajor driver of large-scale shifts
in species distributions (Dynesius and Jansson 2000) and
may be responsible for promoting rapid speciation among
closely related lineages while reducing the formation of deep
branches inspeciesphylogenies (JanssonandDynesius2002).

Contemporary Diversity and Species Elevation Ranges

As noted above, midelevation bands tend to have greater
relative area, which may promote species diversity (Sanders
2002), especially if temperatures are stable. However, the
midelevation diversity observed in contemporary popula-
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tions in our model cannot be explained by these factors
alone: historical temperatures were generally much higher
than they are today (Zachos et al. 2001), and temperatures
matching those in contemporary midelevation bands were
comparatively rare. Despite this, because species mideleva-
tion bands were better described by the E scenario and their
elevation ranges were better described by the T scenario (ta-
ble 1), it appears that joint consideration of historical tem-
perature and elevation changes are necessary for explaining
species elevational distributions. This may also indicate that
elevation changes were important for driving interspecific
differences in geographic distribution and temperature tol-
erance, while temperature fluctuations were important for
within-species variability in temperature tolerances.

Several of the secondary scenarios were better able to pre-
dict species midelevation bands than was the primary ET
model, including scenarios with the COMPETITION knob set
with reduced interspecific competition relative to conspecific
competition, theDISPERSAL knob set to directed local dispersal
or global dispersal, and the scenariowith the REINVASION knob
turned on. Reduction in the strength of interspecific compe-
tition allows more species to coexist within a single eleva-
tion band (Gifford and Kozak 2012), which could explain
why this scenario was better able to model high diversity at
midelevation ranges.

Because the secondary dispersal and reinvasion scenarios
allowed species to colonize areas more rapidly than the pri-
mary model, these scenarios’ superior predictive ability for
species midelevation bandsmay also indicate that rapid dis-
persal was important for colonizing contemporary midele-
vation bands, as they came to represent a larger fraction of
the total available area. This would match findings suggest-
ing that the large, fragmented geographic ranges of some
plethodontids led to rapid divergence during the Pleisto-
cene (Thesing et al. 2016). Interestingly, these scenarios also
correspond to predictions of rapid temperature-driven ex-
tinction events between 10 and 30 Mya (fig. 3e, 3f ), which
suggests that a substantial portion of the contemporary sal-
amander species resulted from relatively recent diversifica-
tion events. This provides another explanation of why these
scenarios were better able to explain high diversity at con-
temporarymidelevation bands, as this diversificationwould
have coincided with the rapid increase in available area at
these temperature ranges over the past 10 Myr.

Scenario Results

In accordance with results from other GSMs, our findings
suggest that no single model is able to simultaneously match
all of the metrics that we test (Gotelli et al. 2009). Although
the ET scenario was the best-fitting model when considered
across all of the metrics that we tested, it performed poorly
for predictions of extant species richness and for the g and

K statistics; it was outperformed by several other scenarios
for both the LTT plot and the extant species midelevation
distribution. The same problem persisted even for higher-
dimensional interactions among control knobs that we tested.
For example, a three-way interaction scenario testing the ET
model with directed dispersal and multiple reinvasions per-
formed worse than either of the two-way interactions. Thus,
different scenarios of our GSM appear to be best suited for
predicting specific kinds of metrics.
The most obvious difference between the primary and

secondary scenarios was in the relationship between speci-
ation and extinction rates over time. In the ET model (and
most other primary scenarios),wT was small, and correlations
between diversification rates and temperature change were
weak (fig. A1, available online). Nevertheless, the K statistic
was significantly less than 1, suggesting that selective pres-
sures on temperature optimawere sufficiently strong to over-
ride niche conservatism (which arises in the models as a low
j value, representing a Brownian process with limited drift;
Blomberg et al. 2003). Conversely, in most of the secondary
scenarios, effects of temperature on mortality were substan-
tially higher, and periods of rapid temperature change cor-
responded to spikes in extinction rates. Interestingly, speci-
ation rates changed little through time in these scenarios,
which does not match current paradigms of “bursts” of spe-
ciation leading to or following from major extinction events
(Ricklefs 2014). This suggests that the plethodontid species
pool may be determined primarily by a relatively constant
background rate of speciation, with periodic bursts of ex-
tinction.
Our results for the competition scenarios suggest that

competitive effects among con- and heterospecifics are not
significantly different. However, assuming no heterospecific
competitive interactions led to small but significant reduc-
tions in likelihood, suggesting that in addition to environ-
mental changes, competitive interactions among species are
important in this system (Rangel et al. 2007). This matches
results for global amphibian distributions (Munguía et al.
2012) and for physiological models of the species Plethodon
teyahelee (Gifford and Kozak 2012), suggesting that a com-
bination of competition, physiological tolerances, and dis-
persal limitation determines salamander species ranges.
Among the dispersal scenarios, directed dispersal substan-

tially outperformed global dispersal for predictions of extant
species richness and outperformed random local dispersal
for both richness and LTT plots. This illustrates the impor-
tance of metacommunity dynamics with limited dispersal
for maintaining diversity in our model (Hanski 1998; Kerr
et al. 2002;Holyoak et al. 2005), although it suggests that spe-
cies’ abilities to track favorable climate gradients is impor-
tant as well (Ackerly 2003; Rangel et al. 2007). The sharp
“elbow” in the LTTplots for both themolecular and the sim-
ulated phylogenies are consistent with high extinction rates

Modeling Geoclimate Change in Evolution E9



relative to speciation (figs. 2a, 3a), match previous results
for plethodontids (Nee et al. 1994), and generally match
predictions from all scenarios that we tested. Interestingly,
given that scenarios that predicted rapid spikes in extinction
rates through time generally provided better estimates of the
LTT plot than did scenarios that did not, this suggests that
periodic extinction events may be important for accurately
re-creating the patterns observed in the molecular phylog-
eny (Morlon 2014).

For the scenario with multiple reinvasions, improved fits
for the g and K statistics suggest that recolonization events
from outside eastern North America are important for ex-
plaining plethodontid diversification rates and the evolution
of their temperature optima; this accords with molecular and
biogeographic evidence (Martin et al. 2016). Compared to
the ET scenario, the g statistic for the reinvasion scenario
was lower and primarily but not significantly negative, sug-
gesting that the speciation rate has been slowing over time
(Pybus and Harvey 2000). Potentially, this is because rein-
vasions from outside the region allowed for deep branching
events in the phylogeny without the need for high specia-
tion and extinction rates.

Modeling Methods

The models that we present here have a number of advan-
tages over existing methods. First, because we separately
track relatedness and trait values, traits are generally corre-
lated with phylogenetic relatedness in ourmodel but are not
determined by it (Ackerly 2009). Second, our approach al-
lows speciation to emerge as a coupled result of population
size, genetic isolation, and drift, without the need to impose
an exogenous speciation rate (Hubert et al. 2015). Impor-
tantly, ourmethod even allows speciation to take place sym-
patrically if, by random chance, nearby populations fail to
mate for a sufficiently large number of time steps (Losos and
Glor 2003), although spatially segregated populations are
naturally much more likely to diverge. Third, in our reinva-
sion scenarios we show a simple but tractable method for
incorporating evolutionary dynamics outside the main area
of interest, which seems to perform well for our system. Fi-
nally, while our optimization methods follow existing meth-
ods for GSMs by pooling all prediction errors into a single
term (Gotelli et al. 2009), the likelihood ratio approach that
we utilize allows us to fit multiple metrics simultaneously
without individual components of those metrics dominat-
ing the optimization.

There are also a number of important caveats for in-
terpreting our model results. Most importantly, we model
temperature, competition, and dispersal at very large scales.
Salamanders are strongly influenced by moisture and hu-
midity (Carfioli et al. 2000; Thesing et al. 2016), and their dis-
tributions are often strongly associated with microclimates

and small-scale topography, such as river valleys and drain-
age basins (Bernardo and Reagan-Wallin 2002; Kozak et al.
2006; Johnson et al. 2008). Thus, even before the Pleisto-
cene, when salamander ranges were more contiguous, it is
unlikely that a one-dimensional elevation model accurately
characterizes dispersal barriers and habitat gradients in the
region. While mechanistic models exist that could be used
to incorporate these smaller-scale influences on salaman-
der populations (Vasseur and McCann 2005; Kearney and
Porter 2009; Buckley et al. 2010; Gifford and Kozak 2012),
such methods are typically parameter rich and difficult to
fit (Rangel et al. 2007).Moreover, even if we could accurately
model species responses, it would be difficult, or perhaps
impossible, to hindcast historical changes in small-scale fac-
tors, such as microhabitats and drainage basins, across a
multi-million-year timeline. Thus, it may not be possible to
improve our predictions by incorporating more detailed en-
vironmental models.
Additionally, while we do account for within-species var-

iability in optimum temperature, which is potentially im-
portant (Bolnick et al. 2003), we do not account for within-
or between-species variation in temperature tolerance width.
This is partially an attempt to simplify themodel andmatches
methods used in previous GSMs (Rangel et al. 2007; Gotelli
et al. 2009). Nevertheless, it also represents a methodolog-
ical challenge for future studies. Ideally, niche width should
be allowed to evolve over time just like other traits. How-
ever, unless this is incorporated as part of a trade-off, spe-
cieswill naturally evolve to have the highest temperature tol-
erance range possible.
A third problem is that for a number of our empirical

metrics, even the best-fitting models still provide relatively
poor fits. In particular, the elevation range frequency dis-
tribution includes too many species with very small ranges
and not enough with large ranges. This could be reflective
of incomplete sampling for real-world data. Plethodontids
are well known for including many cryptic and poorly de-
scribed species (Camp and Wooten 2016; Thesing et al.
2016), and wide species ranges could result from errone-
ously lumping multiple species or from incorrectly charac-
terizing recently diverged species (Rosenblum et al. 2012).
Nevertheless, it seems likely that our GSM simply does not
allow for sufficient migration of isolated populations; one
way to address this would be to allow dispersal probability
and distance to evolve as a trait, facilitating the evolution
of generalist and specialist species.
Similarly, for both g and K statistics our predictions pro-

duce substantially wider and less symmetrical distributions
than do the molecular phylogenies. This appears to be a re-
sult of the discrete branch lengths that our simulations pro-
duce (e.g., the shortest tip is always at least one time step
long). In the scenario with shorter time steps, the distribu-
tions for both statistics are substantially more Gaussian and
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better centered on the observed values. Adding randomnoise
to the branch lengths from simulations with longer time
steps gave similarly improved results, which again suggests
a discretization effect.

Conclusion

Our results suggest that community-level interactions cou-
pled with geographic and climate changes are important
contributors to the observed correspondence between ple-
thodontid salamander phylogenetic and spatial patterns in
eastern North America (Kozak and Wiens 2010). Our re-
sults also show the practical applicability of linking popula-
tion dynamics, community composition, and environmen-
tal change in a GSM framework to explain evolutionary
histories (Gotelli et al. 2009). Recent advances in models
that include both species interactions and evolution have
provided useful insight into understanding both processes
(Rangel and Diniz-Filho 2005; Rangel et al. 2007; Rosindell
et al. 2015). We hope that incorporating geological and cli-
mate history provides further insight and that our study can
help others apply similar tools in the future.

Acknowledgments

We thank K. Kozak for helpful advice and for giving us ac-
cess to the aligned molecular data from his 2009 study. We
thankW. Pearse for advice on reconstructing and bootstrap-
ping the molecular phylogeny. We also thank J. Losos and
L. Mahler for helping A.T.C. develop an earlier conceptual-
ization of this model in their undergraduate course “Evolu-
tion of the Niche” and for encouraging us to continue to de-
velop the ideas we present here. Finally, we are enormously
grateful to our editor, D. C. Collar; the editorial board at
The American Naturalist; and two anonymous reviewers
for their kind encouragement and detailed feedback, with-
out which this article could never have been written in its
current form. The work of A.T.C. and R.B. was supported
by a National Science Foundation Graduate Research Fel-
lowship; R.B. was also supported by a Department of Energy
Computational Science Graduate Fellowship under grant
DE-FG02-97ER25308, and A.T.C. was also supported by
the Balzan Prize Foundation (awarded to D. Tilman).

Literature Cited

Ackerly, D. 2009. Conservatism and diversification of plant func-
tional traits: evolutionary rates versus phylogenetic signal. Proceed-
ings of the National Academy of Sciences of the USA 106:19699–
19706.

———. 2003. Community assembly, niche conservatism, and adap-
tive evolution in changing environments. International Journal of
Plant Sciences 164:S165–S184.

AmphibiaWeb. 2016. Amphibian species lists. Accessed August 24,
2016.

Bernardo, J., and N. Reagan-Wallin. 2002. Plethodontid salamanders
do not conform to “general rules” for ectotherm life histories: in-
sights from allocation models about why simple models do not
make accurate predictions. Oikos 97:398–414.

Blomberg, S. P., T. Garland Jr., A. R. Ives, and B. Crespi. 2003. Test-
ing for phylogenetic signal in comparative data: behavioral traits
are more labile. Evolution 57:717–745.

Bolnick, D. I., R. Svanbäck, J. A. Fordyce, L. H. Yang, J. M. Davis,
C. D. Hulsey, and M. L. Forister. 2003. The ecology of individuals:
incidence and implications of individual specialization. American
Naturalist 161:1–28.

Britton, T., C. L. Anderson, D. Jacquet, S. Lundqvist, and K. Bremer.
2007. Estimating divergence times in large phylogenetic trees. Sys-
tematic Biology 56:741–752.

Bruce, R. C., R. G. Jaeger, and L. D. Houck. 2000. Preface. Pages ix–x
in R. C. Bruce, R. G. Jaeger, and L. D. Houck, eds. The biology of
plethodontid salamanders. Kluwer/Plenum, New York.

Buckley, L. B., M. C. Urban, M. J. Angilletta, L. G. Crozier, L. J. Rissler,
and M. W. Sears. 2010. Can mechanism inform species’ distribu-
tion models? Ecology Letters 13:1041–1054.

Camp, C. D., and J. A. Wooten. 2016. Hidden in plain sight: cryptic di-
versity in the Plethodontidae. Copeia 104:111–117.

Carfioli, M. A., H. M. I. Tiebout, S. A. Pagano, K. M. Heister, and
F. C. Lutcher. 2000. Monitoring Plethodon cinereus populations.
Pages 463–475 in R. C. Bruce, R. G. Jaeger, and L. D. Houck, eds. The
Biology of plethodontid salamanders. Kluwer/Plenum, New York.

Colwell, R. K., R. R. Dunn, and N. C. Harris. 2012. Coextinction and
persistence of dependent species in a changing world. Annual Re-
view of Ecology, Evolution, and Systematics 43:183–203.

Dowling, H. G. 1956. Geographic relations of Ozarkian amphibians
and reptiles. Southwestern Naturalist 1:174–189.

Dynesius, M., and R. Jansson. 2000. Evolutionary consequences of
changes in species’ geographical distributions driven by Milanko-
vitch climate oscillations. Proceedings of the National Academy of
Sciences of the USA 97:9115–9120.

Gifford, M. E., and K. H. Kozak. 2012. Islands in the sky or squeezed at
the top? ecological causes of elevational range limits in montane sal-
amanders. Ecography 35:193–203.

Gotelli, N. J., M. J. Anderson, H. T. Arita, A. Chao, R. K. Colwell,
S. R. Connolly, D. J. Currie, et al. 2009. Patterns and causes of spe-
cies richness: a general simulation model for macroecology. Ecol-
ogy Letters 12:873–886.

Hanski, I. 1998. Metapopulation dynamics. Nature 396:41–49.
Herman, T. A., and J. L. Bouzat. 2016. Range-wide phylogeography of

the four-toed salamander: out of Appalachia and into the glacial af-
termath. Journal of Biogeography 43:666–678.

Holyoak, M., M. A. Leibold, and R. D. Holt. 2005. Metacommunities:
spatial dynamics and ecological communities. University of Chicago
Press, Chicago.

Hubert, N., V. Calcagno, R. S. Etienne, and N. Mouquet. 2015. Meta-
community speciation models and their implications for diversifi-
cation theory. Ecology Letters 18:864–881.

Jackson, S. T., and J. T. Overpeck. 2000. Responses of plant populations
and communities to environmental changes of the late Quaternary.
Paleobiology 26:194–220.

Jansson, R., and M. Dynesius. 2002. The fate of clades in a world of
recurrent climatic change: Milankovitch oscillations and evolu-
tion. Annual Review of Ecology and Systematics 33:741–777.

Modeling Geoclimate Change in Evolution E11



Johnson, M. A., M. Leal, L. Rodriguez Schettino, A. C. Lara, L. J.
Revell, and J. B. Losos. 2008. A phylogenetic perspective on foraging
mode evolution and habitat use in West Indian Anolis lizards. An-
imal Behaviour 75:555–563.

Kearney, M., and W. Porter. 2009. Mechanistic niche modelling:
combining physiological and spatial data to predict species’ ranges.
Ecology Letters 12:334–350.

Kerr, B., M. A. Riley, M. W. Feldman, and B. J. Bohannan. 2002. Local
dispersal promotes biodiversity in a real-life game of rock-paper-
scissors. Nature 418:171–174.

Kozak, K. H., R. A. Blaine, and A. Larson. 2006. Gene lineages and
eastern North American palaeodrainage basins: phylogeography
and speciation in salamanders of the Eurycea bislineata species com-
plex. Molecular Ecology 15:191–207.

Kozak, K. H., R. W. Mendyk, and J. J. Wiens. 2009. Can parallel diver-
sification occur in sympatry? repeated patterns of body-size evolu-
tion in coexisting clades of North American salamanders. Evolu-
tion 63:1769–1784.

Kozak, K. H., and J. J. Wiens. 2010. Niche conservatism drives ele-
vational diversity patterns in Appalachian salamanders. American
Naturalist 176:40–54.

Losos, J. B., and R. E. Glor. 2003. Phylogenetic comparative methods
and the geography of speciation. Trends in Ecology and Evolution
18:220–227.

Martin, S. D., D. B. Shepard, M. A. Steffen, J. G. Phillips, and R. M.
Bonett. 2016. Biogeography and colonization history of plethodontid
salamanders from the interior highlands of eastern North America.
Journal of Biogeography 43:410–422.

Min, M. S., S.-Y. Yang, R. Bonett, D. Vieites, R. Brandon, and D.Wake.
2005. Discovery of the first Asian plethodontid salamander. Nature
435:87–90.

Morlon, H. 2014. Phylogenetic approaches for studying diversifica-
tion. Ecology Letters 17:508–525.

Mueller, R. L., J. R. Macey, M. Jaekel, D. B. Wake, and J. L. Boore.
2004. Morphological homoplasy, life history evolution, and histor-
ical biogeography of plethodontid salamanders inferred from com-
plete mitochondrial genomes. Proceedings of the National Acad-
emy of Sciences of the USA 101:13820–13825.

Munguía, M., C. Rahbek, T. F. Rangel, J. A. F. Diniz-Filho, and M. B.
Araújo. 2012. Equilibrium of global amphibian species distributions
with climate. PLoS ONE 7:e34420.

Nee, S., E. C. Holmes, R. M. May, and P. H. Harvey. 1994. Extinction
rates can be estimated from molecular phylogenies. Philosophical
Transactions of the Royal Society B 344:77–82.

Pearse,W. D., andA. Purvis. 2013. phyloGenerator: an automated phy-
logeny generation tool for ecologists. Methods in Ecology and Evolu-
tion 4:692–698.

Pybus, O. G., and P. H. Harvey. 2000. Testing macro-evolutionary
models using incomplete molecular phylogenies. Proceedings of the
Royal Society B 267:2267–2272.

Rahbek, C. 1995. The elevational gradient of species richness: a uni-
form pattern? Ecography 18:200–205.

Rangel, T. F. L., and J. A. F. Diniz-Filho. 2005. An evolutionary tol-
erance model explaining spatial patterns in species richness under
environmental gradients and geometric constraints. Ecography 28:
253–263.

Rangel, T. F. L., J. A. F. Diniz-Filho, and R. K. Colwell. 2007. Species
richness and evolutionary niche dynamics: a spatial pattern–oriented
simulation experiment. American Naturalist 170:602–616.

Ricklefs, R. E. 2014. Reconciling diversification: random pulse models
of speciation and extinction. American Naturalist 184:268–276.

Ricklefs, R. E., R. E. Latham, and H. Qian. 1999. Global patterns of
tree species richness in moist forests: distinguishing ecological in-
fluences and historical contingency. Oikos 86:369–373.

Rosenblum, E. B., B. A. Sarver, J. W. Brown, S. Des Roches, K. M.
Hardwick, T. D. Hether, J. M. Eastman, M. W. Pennell, and L. J.
Harmon. 2012. Goldilocks meets Santa Rosalia: an ephemeral spe-
ciation model explains patterns of diversification across time scales.
Evolutionary Biology 39:255–261.

Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge
University Press, Cambridge.

Rosindell, J., L. J. Harmon, and R. S. Etienne. 2015. Unifying ecology
and macroevolution with individual-based theory. Ecology Letters
18:472–482.

Sanders, N. J. 2002. Elevational gradients in ant species richness: area,
geometry, and Rapoport’s rule. Ecography 25:25–32.

Slingerland, R., and K. P. Furlong. 1989. Geodynamic and geomorphic
evolution of the Permo-Triassic Appalachian mountains. Geomor-
phology 2:23–37.

Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analy-
sis and post-analysis of large phylogenies. Bioinformatics 30:1312–
1313.

Thesing, B. D., R. D. Noyes, D. E. Starkey, and D. B. Shepard. 2016.
Pleistocene climatic fluctuations explain the disjunct distribution
and complex phylogeographic structure of the southern red-backed
salamander, Plethodon serratus. Evolutionary Ecology 30:89–104.

Vasseur, D. A., and K. S. McCann. 2005. A mechanistic approach for
modeling temperature-dependent consumer-resource dynamics.
American Naturalist 166:184–198.

Wilder, I., and E. Dunn. 1920. The correlation of lunglessness in sal-
amanders with a mountain brook habitat. Copeia 84:63–68.

Zachos, J., M. Pagani, L. Sloan, E. Thomas, andK. Billups. 2001. Trends,
rhythms, and aberrations in global climate 65 Ma to present. Science
292:686–693.

References Cited Only in the Online Appendixes

Matmon, A., P. Bierman, J. Larsen, S. Southworth, M. Pavich, and
M. Caffee. 2003. Temporally and spatially uniform rates of erosion
in the southern Appalachian Great Smoky Mountains. Geology 31:
155–158.

NWS (National Weather Service). 2011. Temperature records for
Greensboro, North Carolina. Accessed May 1, 2011.

USGS (United States Geological Survey). 2004. Geologic provinces of
the United States: Appalachian highlands province. Accessed May 1,
2011.

Wiens, J. 2007. Global patterns of species richness and diversification
in amphibians. American Naturalist 170:S86–S106.

Associate Editor: David C. Collar
Editor: Alice A. Winn

E12 The American Naturalist


